Synthesis, Crystal Structure, and Nonlinear Optical Property of Two New Chromophores Containing Furan Ring as a Conjugation Bridge

Wei Zhang, Jianli Hua, Pin Shao, Peng Ren, Jingui Qin,* Yu Zhang,[†] Zuhong Lu,[†] Huaimin Hu,^{††} and Deqing Zhang^{††}

Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China

[†]National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, P. R. China ^{††}Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China

(Received October 15, 2002; CL-020880)

Two new organic chromophores containing furan ring as a conjugation bridge located near the donor have been synthesized and characterized by X-ray single crystal structure determination. Their first molecular hyperpolarizability (β) are measured by Hyper-Rayleigh Scattering (HRS) technique.

Organic second-order nonlinear optical (NLO) chromophores have attracted considerable research interests during the past decade due to their potential applications in optical communications, molecular switching, optical memory and frequency doubling.¹ The appropriate second-order NLO chromophores should exhibit the following properties: large first molecular hyperpolarizability (β), good chemical and thermal stability and wide optical transparency.²

According to the bond length alternation (BLA) theory,³ incorporating thermally stable five-membered heteroaromatics into chromophores can increase the first-order molecular hyperpolarizability due to the highly efficient conjugation as a result of the lower resonance stabilization energy of heterocyclic compounds than that of benzene analogues.⁴ However, although there is much research on the thiophene ring, of which resonance stabilization energy is higher than that of furan ring, little attention has been put on the furan ring.^{4,5} In order to investigate the influence of the furan ring as a conjugation bridge on the values of β , two (*E*)-5-diethylaminofuran chromophores with different acceptors (**1a** and **1b**) have been synthesized for the first time. Their synthetic routes are shown in Scheme 1. In these two chromophores the electron-rich furan ring is located near the donor, and may play a role of an auxiliary donor.⁶

Characterization of the chromophores was carried out by ¹H-NMR, IR, MS, and elemental analyses,⁷ and supported by the X-ray structure determination of chromophore **1a**.⁸ The ORTEP drawing of **1a** is shown in Figure 1. From the bond length data, the value of BLA of chromophore **1a** (BLA is defined as the average difference in length between adjacent single and double bonds⁹) could also be computed out as 0.0046 nm. This value is close to 0.004 nm, the optimal value according to the BLA theory when

Figure 1. The ORTEP drawing of **1a** with thermal ellipsoids drawn at the 50% probability level. All hydrogen atoms are omitted for clarity. Representative bond lengths (Å) are as follows: C17-C16 = 1.362(3), C16-C15 = 1.387(3), C15-C14 = 1.359(3), C14-C13 = 1.395(3), C13-C12 = 1.353(3), C12-C6 = 1.425(3), C6-C5 = 1.363(2), C5-C4 = 1.507(2), C4-C3 = 1.375(2).

chromophores reach to their maximal β values.

The first molecular hyperpolarizability of the chromophores **1a** and **1b** was measured by Hyper-Rayleigh Scattering (HRS) technique¹⁰ in chloroform using the fundamental excitation wavelength of 1064 nm. The known β value for *p*-nitroaniline (*p*-NA) in chloroform $(23 \times 10^{-30} \text{ esu})^{11}$ was used as an external reference. The measured β values of chromophores **1a** and **1b** were found to be 593×10^{-30} and 1196×10^{-30} esu, respectively, and the static β_0 values obtained from the two-level approximation model were extrapolated to be 136×10^{-30} esu and 131×10^{-30} esu, respectively. Their absorption maxima (λ_{max}) in chloroform are at 617 and 571 nm respectively.

In summary, we have synthesized two new chromophores containing furan ring as a conjugation bridge located near the donor. They all show relatively large β values.

The work was supported by a grant from the National Key Fundamental Research Program of China and by National Science Foundation of China.

References and Notes

- S. R. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, *Nature*, **388**, 845 (1997).
- 2 C. R. Moylan, R. J. Twieg, V. Y. Lee, and R. D. Miller, *J. Am. Chem. Soc.*, **115**, 12599 (1993).

Copyright © 2003 The Chemical Society of Japan

- 3 S. R. Marder, D. N. Beratan, and L. T. Cheng, *Science*, **252**, 103 (1991).
- 4 V. P. Rao, Y. Cai, and A. K.-Y. Jen, *Chem. Commun.*, **1994**, 1689.
- 5 a) S. Song, S. J. Lee, B. R Cho, D. H. Shin, K. H. Park, C. J. Lee, and N. Kim, *Chem. Mater.*, **11**, 1406 (1999). b) B. R. Cho, K. N. Son, S. J. Lee, T. I. Kang, and M. S. Hon, *Tetrahedron Lett.*, **39**, 3167 (1998). c) S. S. P. Chou and C. H. Shen, *Tetrahedron Lett.*, **38**, 6407 (1997). d) J. Hua, W. Zhang, J. Luo, J. Qin, Y. Shen, Y. Zhang, and Z. Lu, *J. Chem. Res., Synop.*, **2001**, 418. e) M. Heylen, K. V. D. Broeck, C. Boutton, M. V. Heylen, A. Persoons, and C. Samyn, *Eur. Polym. J.*, **34**, 1453 (1998). f) S. S. P. Chou, G. T. Hsu, and H. C. Lin, *Tetrahedron Lett.*, **40**, 2157 (1999).
- 6 I. D. L. Albert, T. J. Marks, and M. A. Ratner, J. Am. Chem. Soc., 119, 6575 (1997).
- 7 The yield, melting point, IR (KBr, cm⁻¹), NMR (300 MHz), MS, and elemental analysis data for these compounds are as follows: **1a**: yield 72%; mp 148-150 °C; IR (KBr): 2211 (C \equiv N), 1617 (C=C); ¹H-NMR (CDCl₃): δ 1.03-1.32 (m, 12H), 2.35 (s, 2H), 2.52 (s, 2H), 3.41 (q, 4H), 3.71 (d, 1H, CH), 5.17 (d, 1H, *J* = 3.9 Hz, CH), 6.44 (d, 1H, *J* = 15.0 Hz, CH), 6.62-6.69 (m, 2H); MS (FAB), *m/z*: 335 (M⁺, 100%); Anal.

Calcd for C₂₁H₂₅N₃O: C, 75.22; H, 7.46; N, 12.53. Found: C, 75.64; H, 7.25; N, 12.76. **1b**: yield 78%; mp 193-195 °C; IR (KBr): 1649 (C=N), 1614 (C=C); ¹H-NMR(CDCl₃): δ 1.27 (t, 6H), 3.46 (q, 4H), 4.23 (s, 3H), 5.34 (d, 1H, *J* = 3.9 Hz, CH), 6.28 (d, 1H, *J* = 15.6 Hz, CH), 6.98 (d, 1H, *J* = 3.9 Hz, CH), 7.20 (d, 1H, *J* = 15.6 Hz, CH), 7.48 (d, 2H, *J* = 6.9 Hz, CH₂), 8.39 (d, 2H, *J* = 6.9 Hz, CH₂); MS (FAB), *m/z*: 257 (M⁺-127, 100%); Anal. Calcd for C₁₆H₂₁N₂OI: C, 50.00; H, 5.47; N, 7.29. Found: C, 49.79; H, 5.53; N, 7.65.

- 8 Crystal data for **1a**: $C_{21}H_{25}N_3O$; $M_r = 335.44$, monoclinic, a = 9.5863(3) Å, b = 15.2532(4) Å, c = 13.6325(4) Å, $\alpha = 90$, $\beta = 98.213(10)$, $\gamma = 90$, V = 1972.92(10) Å³, $D_{calc} = 1.129$ g/cm³, T = 293(2) K, space group, $P2_1/n$, Z = 4, F(000) = 720, μ (Mo K α) = 0.071 mm⁻¹, 8762 reflections measured, 4527 unique ($R_{int} = 0.0393$), 1847 observed (> 2 σ), final residuals $R_1 = 0.0472$, $\omega R_2 = 0.1045$ [$I > 2\sigma(I)$]; $R_1 = 0.1309$, $\omega R_2 = 0.1337$ (all data).
- 9 F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, *J. Am. Chem. Soc.*, **116**, 10703 (1994).
- 10 Y. Shen, Z. Tang, M. Gui, J. Cheng, and Z. Lu, *Chem. Lett.*, 2000, 1140.
- 11 J. L. Ouder and D. S. Chemla, J. Chem. Phys., 66, 2264 (1977).